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ABSTRACT: Chaplygin's method [1] has been extended by Fal'kovich 
[2] to the case of several characteristic velocities; it has here been 
used to solve the two-dimensional unsymmetrical problem of subsonic 
gas jet flow around a plate near a solid wall. The Zhukovskii-Roshko 
scheme [3, 4] has been used with a stagnant zone ahead of the plate. 
Formulas are derived for the current function, normal-pressure coef- 
ficient, and geometrical elements of the flow. The result is extended 
to the case of an incompressible fluid by passing to the limit. 

1. A subsonic gas flow moves along the solid horizontal wall FME 
with a speed vI and strikes a plate AB of length l that lies at a distance 
h from the wall. The plate forms an angle a = o~r (0 < v < 0.5) with 
the negative direction of vt and divides the flow into two unsymmet- 
rical branches. The upper branch is unbounded in width and bears an 
infinite amount of fluid, while the lower one has width 6 and flow 
rate Q. The liquid near the plate is decelerated, the minimum ve- 
locity v0 < vt on FME occurring at M. The velocity is vz > vt on the 
surfaces AC and BD. We place the origin at A, with the x-axis di- 

rected along vl (Fig. 1). 
The problem is solved via the Zhukovskii-Roshko scheme [3, 4] 

with a stagnant zone ahead of the plate. Chaplygin [5] considered 
jet flow around a plate with such a zone, with an arbitrary velocity 
on the jet surfaces bounding the stagnant zone (this velocity is to be 
found from additional conditions). Here it is assumed that this ve- 

locity equals v0, the least velocity on the wall. 
The jet theory gives [4] a low value for the normal-pressure coef- 

ficient, so we need a larger pressure P0 in the stagnant zone in order 
to obtain a result close to the actual one, i. e . ,  a lower v0 on surfaces 
OA' and OB'. Since the flow surface can be taken as a rigid wall, we 
consider the subsonic flow of the gas in a channel in which one wail 
FME is straight and the other LOA'ACH is curved. The velocity drop 
in this channel will be the greater the larger the expansion of the 
channel near the plate (streamline LO is perpendicular to the plate 
at the branch point O) and the less the width of the channel to the 
left at infinity, and this is possible for h small and c~ small, since 
then LO undergoes the greatest change in slope. This problem (a  and 
h small) is of the greatest interest, although the solution is mathemat- 
ically applicable for any a and h allowed by the flow scheme. 

We assume that the current function ~ = 0 on the branching lines 
OA'ACH and OB'BDK, while r = - Q  on FME. 

A semicircle with a dot at 0 = 0 and radii r0 and ra (Fig. 2) repre- 
sents the entire region filled by the flow in the plane of the velocity 

2 2 
hodograph with the polar coordinates 0 and r = v / V m a  x. The follow- 
ing are the values that ~ must take along the boundaries of the hodo- 
graph region: 

for 0 = -- on, % < "r ..< "~ q ~ = 0  
= 0  for O = y a ,  % < ~ ,  y = t - - a  

~ = - - O  ro~ 0 = 0 ,  ~ o - . < ~ ' ~  
~) = 0 for 0 = O, T1 "-<5 "-< ~ (1.1) 

~ : 0  rot - c = % ,  - - o ~ O ~ O  
~ 0 = 0  for T = ~0, 0 -~ 0 ~ y g  

9 = 0  for �9 = "ca, - - o ~ 0 ~ 0  
9 = 0 for x = x=, 0 % O < Va (1.2) 

The problem then reduces to an internal Dirichlet problem for 
Chaplygin's equation: 

o 0~b 
4.r= (l - -  ~) ~ +4"~ [t q- (~ -- 1) "~] "~- + 

+ [ l - ( 2 ~ +  l ) , l  g g r  

(~ = t / (x --  1), ~ = c / %) (1.3) 
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in the regions of the semicircle. As ~ < ~/(2~ + 1), Eq. (1.3) is of 
elliptic type in this region, and we seek a solution in the form 

(% O) = O 0 - -  " r n  + ~ [Anz~. (~:) + Bn~x (.~)] sin n O ,  
"rn "f 

z~ [(C nz'~ ('~) + Dn~'~ ('0] sin nO 

(o=§ 
~h (% O) = ~, [EnZ x ('r,) -~- F n~ x ('~)] sin n~0 , 

n=l  "[ 
co 

~ (~, 0) = ~ [ 6 1 ~  (~) + ~ / ~  (~)1 sin nO . (i.4) 

Here the subscript to ~ is the number of the region in the semi- 
circle (Fig. 2), while zv(r) is an integral of the equation 

4T' (t - -  ~)z~" + 4~ [t + (6 --  1)~1 ~( - -  (i.5) 

_ ~ 2 [ i _ ( 2 6 + t ) ~ 1  z ~ = 0 ,  ( ~ =  e ,  ;9, 

which is regular at r = 0 and which has been considered by Chaplygin 
[1], while gu(r) is a second linearly independent integral of (1.5) 
derived by Lighthilt [6] and Cherry [7, 8], which becomes the loga- 
rithmic solution of [7] when v is a positive integer. Fal'kovich [2] 
was the first to use this integral in the theory of gas jets. The follow- 
ing is the Wronskian for these integrals: 

W~ (*) = z '  (,) ~ (~) - ~ '  (~) ~ (~) = v (t - ~)~-~, (1.6) 

where the coefficients A n, B n . . . .  , H n have to be determined. 
The ~ defined by (1.4) satisfy the boundary conditions of (1.1). 

We now specify that the boundary conditions of (1.2) are obeyed and 
aim that the solutions meet the conditions for analytic continuation 
through the boundaries of the subregions, i. e. ,  

ab (1.7) 
~]:~=~s, 0~ - -  Or for v : T z ,  0~-%.0~<'ra* 

0,~ 0,4 
9 2 = f l A '  0"r - -  O'g for X = ' ~ i ,  - - a n % 0 - ~ O .  

Conditions (1.2) and (1.q) give a system of 8n algebraic equations 
in 8n unknowns, which are solved for the coefficients to give the final 
solution in the form 
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Here 

,,<,, 7 ,,<,, 
"a  ~ l l  

iX3 
sin o)0 l - O 0 4 - ~ . - - z ~ z ~ ( 1 . )  ~ ], ,1~(~, o ) - - - ~ -  . 

c o  

,2(,, 0)= 20 y, x2(,) 
T~ 

~ o  

, ,  (~, o) = -  ~ ~ z, (1.) ~in o,o 
�9 ( 0  

T,  (% 1.2) - -  Tv (% ~ro) Tv" (~': ~ )  - -  W ,  ('q) T ,  (~, ~o) 
z, (~) = ~ ,  

(i.8) 

T~ (1.~, ~o) w~ (1.0 

T v ('r xo) - -  W~ (1.0 Tv (1., z~) 
X) (~) = T~ (~2, 1.o) W,  (1.,) 

( i = 1 ,  / = 3 ,  v = X ;  i = 2 ,  /." = 4, v = m ) ,  

T~ (% ~) : z~ (h) ;~ %1 - ~ %) ;~ (%), T~ (~, ~) = o, 

Tv" (1.i' ~j) = [Tv" (1.' ~)]~=~i'  Tv' (1.~' 1.i) = W~ ff i) 

(i, / = 0 ,  t ,  2; v = o ,  L). (1.9) 

We also note tha t  

T j  ('~o, ~2) - -  W~ 0to) T." (x~, 1.2) - -  W .  ('n) W .  (~ro) 
Xi" (1.o) = "/'~ (1.2, 1.o1 - -  T .  ('t'2, "t'o) W~, (1.,)' 

T~" (1.~, 1.o) - -  W,  (1.0 W,  (1.e) 
X / ( ~ )  = T~ (~2, 1.o) W~ (1.0' 

Xi (1.o) = - -  1 ,  Xj (~2) = O, X~ (~ , )  : X~ (~*) : - -  t ,  

~ '  (~1 + ~/(1.0 = o, 

( i = l ,  / = 3 ,  v = ~ ;  i = 2 ,  / = 4 ,  v = r  (i.i0) 

We introduce the  following exac t ly  zero b inomia l  into the  ex -  
pression for Xi(r) in order to unify the  expressions for X~(r0) and Xj(rz) 
together  with the  funct ions  H ( u , r ) ,  II(U,T), and f2(U,T), which are 
defined below by (2.4),  (2.10),  and (2.14): 

W~ (~,) T, ('r, 1.o) T~ (% 1.0) 

T~ (1.2, 1.o) W~ (~,) -- T~ (1.~, 1.o)" 

2. Consider the re la t ion be tween the parameters  of  the problem. 
The  fol lowing genera l  formula  applies  a long any jet  surface:  

(2.1) 
( t  - -  1.)-'~ 6~b sin 0 dO. dy : 2"r v O'~ 

We substi tute into (2.1) the  ~04(T, 0) of (1.8), in tegra te  with respect  
to 0 along AC (r = rz = corot) f rom 0 = o~r (y = 0) to 0 = 0 (y = YC), 
use (1.6) and (1.10), and employ  the expression for the  flow rate  

Q . =  6/)1(t - -  1.1) ~ '  ( 2 . 2 )  

which gives us the  ordinate  of  point  C 

YC = -- ~ H(o), 1.0. (2"31 

Her e 

~n (-- t) n - '  Tv' (1.' 1.0) -- W ,  (Z I 
X Z~ v 2 - -  1 7', (~, ~o) 

n = l  

( v = ~ ,  k = y ;  v =  o), k =  (r). (2.4) 

3 0 4  

Similar ly  we find the  ordinate of point D: 

YD = l sin ~ + 6 H(L, 1.1)- (2.5) 

We add the  lyci of  (2.3) to the  YD of (2.5) to ge t  an expression for 
the width of the  cavi ty:  

a = l s in  ~n + 6[H(L, 1.0 + H(o,  1.t)]. (2.8) 

Since 6 + lycl = h (Fig. Z), we have  

6 = hli  q- H(s 1.1)]-L (2.7) 

We turn the x .  and y -axes  counterclockwise through the angle  

O,=IAi~--an=y~--V~ z 

and get  a new coordinate  sys tem x ' A y '  in which along any s t reaml ine  

(1  - -  ~)-~ 
dy, = -S - -7 - -  x 

[ __~_ i - ( ~ + J ) ~  0r ] 
X 21. s i n O ' d O ' - -  2~(1 , 0 aO" sinO'd1. �9 (2.8) 

We have  O' = ~r/2 and 0 '  = --~r/2 along parts B'B and AA'  of the  
p la te ,  respect ively  (0 '  = 0 -- 0t),  and (2.8) can  be writ ten as 

t - - ( 2 ~ + 1 ) ~  ( ~ 0 ' )  
dy" = q- 2Vmax~V. " (t -- T)~ +1 s,=:~v~d'r, (2.9) 

where + corresponds to AA'  and -- to B'B. We in tegra te  (2.9) from r0 
to rz to find the  length  ll of part  B'B: 

' [S <-o,, 
l l = - - 2 ~ m a x  ,o "dl'(l--'~)~+t \ no" Jo,=,/,~: d'~-}- 

- -  d1. 
+ ,,i,0_.o~+, t,.oo')~,=,i,, ]. 

,,1:1 

We ca lcu la t e  the  integrals  with use of (1.8), (1.10), (2.4), and 
(2.7) together  with the  notat ion 

[1  ~i~ ~ / 1.2 \ ' / ' s i n  kr~ 
n(v, 1.1=4~ta-z~ ) t ~ )  -~-x 

(__1) n-1 T~/(X, 1.2) -- W v (1.) 
X ]~  r 1 T~ ('r2, X0) ' 

(,_1.,~.( 1., ,r 
a=\1---2--~0) t-if-o) (v=L,  k=~ ;  v = o ,  k=~) ,  (2.10) 

whereupon e l emen ta ry  steps g ive  

l t = h [ t - -  A +  H(L, xi) + II(k,  x0)l-- 

--II(L, ~r)]([l § H(o ,  T,)] s in an}-1. (2.ii) 

"r=% 

Fig. 2 



In deriving (2.11) we have used the equalities [1] 

~ _  (~  + ~) ~ 2 (t --T)-~ 
S ~(T-2-7- ~) ~;i- x~ d<) ,~'~ - .,,~_ ~ ( ; -  tX~(T) + ~mx( (0i 

( i =  t,3: v = Z ;  i =2 ,4 ;  v = a ) ) ,  

v ~ - -  1 - -  sin k n j  
n=t  

(V =L ,  k = T ;  v ~ ,  k = ~ ) .  (2.1.2) 

We find the length~z of AA' similarly: 

h = h IA - -  t + H (to, ~) + II (~, -%) - -  II (to, ~)l x 

• + H (o, n)] sin cra) -~. (2.1.3) 

We substitute into (2.1) for @2(% O') and then the @l(r, 0') from 
(1.8), integrate with respect to 0 along A'OB' (r  = r0 = eonst) from 
o '  = - ~ r / 2  (y '  = y ~ )  to 0'  = v12  (y'  : y~) ,  and use (1 .10 ) ,  (2 .2 ) ,  (2 .4 ) ,  
and (2.10) together with the notation 

/ l__mi. \~  r~  \ ' h s i n k ~  t t l ~  - - X  
n (,, m) = a ,  \ q - - z ~ j  \ ~ )  ~ 

~o t T~' (m, -c:) - -  W~ (m) 

x ~ ]  v~ .~_ t T~ (z%, To) ' 
n~t  

t~ = - -  (1) '~-I + cos k ~  

(v = X, k = ~ f ;  "~ = to, k =  (~) (2.14) 

to get the length h of A'B' in the form 

& = h [ ~ ( ~ , , % ) i f ~ ( X ,  m~)+~(to ,  % ) - - ~ ( t o , ~ ) l x  (22.5) 

X ([1 + H ((% rex)] sin o~}-~, 

Addition of (2.11), (2.13), and (2.1.5) gives 

t = h [ I I  (:~, %) - -  II (Z,, '~) + 1I (to, %) - -  

- -  :rl (to, ~ )  + ~ (~, too) - -  ~ (~,, x~) + 

+ f~ (o, % ) -  f~ (o, m~) + H (X, m~) + H (to, mt)lx 

X ([t -+ H (to, xl ) ]  sin o~} -x, (2.16) 

We use (2.7) and (2.16) to transform (2.6) to 

a = h { I I  (~, ~o) - -  I I  (;~, ml) + I I  (to, %) - - "  

- -  r~ (,,), -~) + ~ (x, -~0)-- ~ (x, "r~)+ 

"~ ~-~ (to, m0) - -  {~ (to, T1) -{- 2 [H  (L, rex) + H (c,, .1)1} X 

x [I + H (to, ~)l-:. (2 .17)  

Relations (2.2), (2.7), (2.16), and (2.17) define Q, 6, the speed 
at the jet surfaces of zone r0, and also a as functions of rl, "c2, h, 
and t. 

3. The resultant pressure force R on AB is determined by integra- 
tion along the plate, which gives 

R = Ii + h +.p~ta-- t~t, 
13 A 

1 1 =  ~ pdy', I~= S pdy" (3.1) 
B" A" 

Here p is the pressure ahead of the plate, p0 is the pressure in the 
stagnant zone, and Pz is the pressure behind the plate. We use (2.9) 
with 

p ~ po (t - -  m) t~+l, p~ ~ po (t, - -  m~) ~+~, 

p~ ~(i=O, l,  2), (3.2) 

in which P0 is the gas pressure at the branch point to put It as 

po [ r  t - - ( 2 ~ @  l)"g (0~1 ~ 
I i = -  2Vma~-- s ~,~ .~% \ aS, jo.=,&dT + 

co 

xz 
+ r  t - - ( 2 ~ + I ) T  fOSs\ i 

</. ca.3) d 

The following formula [1] is used to calculate the integrals in con- 

j unction with (1.8): 

S~-% [t - -  (2~ + 1) x] Xi (T) dT 

- -  ~"- - t ~ [zl (~) + 2reX( (m)l + 2 0 + i) m'i,x~ (T), 

and we use (1.J.0), (2.2), (2.4), (2.7), (2.10), and (2.12) to transform 
(3.3) to 

h = p% <(i - -  ,~)~ ,~I: x 

x d i  + (2[~ + ~ )~x l~  's~ - [ i  + (2~ + ~)m0l too'l:) + 

+ H (~, ml) (1 - -  ~)~+x + ( i - -  %)~+x [II(X, % ) - -  II(~, T1)l>x 

x l [ t  + g(to, "q)] sing} -~. (3.4) 

An analogous expression may be derived for Iz: 

h =  f h  <(i - -  xa)~ m~/' ([ l  + (2[3 + i) m0] 40 I' - -  

- - [ I + ( 2 0 + t ) T 1 ] ~  'h} + H(% xl) (t--~2)B+l-[ -, 

+ ( i - - m 0 )  ~ + l  [II(~0, T0) - -  I I (~ ,  T1)I> x 

X {i + H(~, ml)] sin ~a)-L (3.5) 

Substitution of (3.2), (3.4), (3.5), (2.15), and (2.16) into (3.1) 
gives 

/~ = p~ - -  (1 - -  m2) ~+~] x 

x [a(~, too) - -  a(L, m~) + a(~o, m0 - -  a (~, ~) + II(L, x~)- -  

- -  II(X, rex) + 11(o, x~ - - : f l ( o ,  ~ ) l  x 

X {[i + H(to,~l] sin on}-:. 

This readily gives the normal-pressure coefficient as 

+ a((O, Z0) - -  Q(to, "~1) + I~(~, ZO) - -  [[ (~*, mr) + 

+ II(w, %) - -  II(~o, mr)] ([t + H(~o, zz)] sin a a) -x, 

h 
= -7- ~ (too, m~, ,~) = 

~ - m o  ( ~ - m 0 ~ r l  / i - m . . \ r ~ <  l 

We note that 

lira F(%, zt, ~ ) =  (@--voS)v~ -z npn Urea x -~ o o  (3.7) 

Equations (2.7), (2.t6), (2.t?),  and (3.6) serve to solve the prob~ 
lem.  

4. The result is readily extended to the ease of an incompressible 
liquid. The expressions [1, 8] for Zv(r ) and go(r) are used with (1.0) 
and (1.9) to find the Iimits 

lira m~ 7'~ ('r too) - -  2 i - -  qo~ ~ ' Vulax--,co 

q i s ~  \ms ) - -  v s ' 

q ~ ( l - -q0~  ~)~ T j  (T~, "c o) - -  W., (m~)  V ~ 
- -  (v  = ~ ,  X) lira m~ T~, (m~, "~o) 2 t - -  qo~ ~ Vmax~C~ 

( i , / =  0, ~, 2), (4.1) 
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We pass m the l imit  for Vmax--- ,o (r.-~ O) in (2.7), (2.16), (2.17), 
and (3.6) in conjunction with (3.7) and (4.1) to get these expressions as 

6 = h II + Ho(~, ~t)] -x, 

l = h[llo(X, Vo)_--- Ilo(X, vt) § 11o(~, vo) - -  

- -  no(o, ,  ~,,) + fG(Z,, vo) - -  Co(X, ,.'x) + e o ( o ,  Vo) - -  

- -  ~Jo(o), Pt) + HoOL, ~) + Ho(co, taft ([1+ Ho(O, v~)] sin o.n) -r, 

a ~ h {Ho(~,, Vo) -- go( )*, vl) + I1o((r v 0- 

- -  I Io (~ ,  ,,',) + ~oO', '-'o) - -  f~o(X, et) + f~o(~, ';o) - -  

--Qo((o, n)  + 2[H0fg, z.a)+ Ho(oL n)lI [t + H,,(tv, vl)]}-*, 

c .  = eql~ ~ ( l - - q @ ) [ r l o ( . %  ~,0) - -  " 

-- nd~., vx) + r ldo ,  vo)-- lldo, v~) + ~o(~, ~o), -- ~o(L, v,) + 

+ f~o(eo, %) - -  eo(O), n)] { [ t +  Ho(~O, v,)] sin oR) -t .  

Here we have  used the symbols 

Ho (v, vi) = lim H (% x'i) = 
-~i--,O 

s in~n  n q~2 ( l - - q o i )  
2 q 1 ~  ~ (--1) n-r n . ~ k ~  t - - q  2~ ' 

n=l 02  

II0 (~, v i) = lira II (v, ~)  = 
*ci.-,*O 

co  v 
s inon NJ n q o l  ( l - - q i ~ )  z 

n=t t - -  qo~ 

f~0 (% v i) = limP. (v, ~i) = 
,i--,o 

sin ~n o~ n qoi ~ (t - -  qiz ~)2 

n=r tv n ' ~  k*2 I - -  %2 

(~ =%,  k =  7; v =  o, k =  e; i = 0 , 1 ) .  
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