JET FLOW AROUND A PLATE NEAR A WALL
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ABSTRACT: Chaplygin's method [1] has been extended by Fal’'kovich
[2] to the case of several characteristic velocities; it has here been
used to solve the two-dimensional unsymmetrical problem of subsonic
gas jet flow around a plate near a solid wall. The Zhukovskii-Roshko
scheme [3, 4] has been used with a stagnant zone ahead of the plate.
Formulas are derived for the current function, normal-pressure coef-
ficient, and geometrical elements of the flow. The result is extended
to the case of an incompressible fluid by passing to the limir.

1. A subsonic gas flow moves along the solid horizontal wall FME
with a speed vy and strikes a plate AB of length I that lies at a distance
h from the wall. The plate forms an angle & = or (0 < o < 0.5) with
the negative direction of vy and divides the flow into two unsymmet-~
rical branches. The upper branch is unbounded in width and bears an
infinite amount of fluid, while the lower one has width 8 and flow
rate Q. The liquid near the plate is decelerated, the minimum ve-
locity vg < v1 on FME occurring at M. The velocity is v2 > vy on the
surfaces AC and BD. We place the origin at A, with the x-axis di-
rected along v (Fig. 1).

The problem is solved via the Zhukovskii-Roshko scheme [3, 4]
with a stagnamt zone ahead of the plate. Chaplygin [5] considered
jet flow around a plate with such a zone, with an arbitrary velocity
on the jet surfaces bounding the stagnant zone (this velocity is to be
found from additional conditions). Here it is assumed that this ve-
locity equals vy, the least velocity on the wall.

The jet theory gives [4] a low value for the normal-pressure coef-
ficient, so we need a larger pressure Py in the stagnant zone in order
to obtain a result close to the actual one, i.e., a lower vy on surfaces
OA' and OB'. Since the flow surface can be taken as a rigid wall, we
consider the subsonic flow of the gas in a channel in which one wall
FME is straight and the other LOA'ACH is curved. The velocity drop
in this channel will be the greater the larger the expansion of the
channel near the plate (streamline LO is perpendicular to the plate
ar the branch point O} and the less the width of the channel to the
left at infinity, and this is possible for h small and o small, since
then LO undergoes the greatest change in slope. This problem (o and
h small) is of the greatest interest, although the solution is mathemat-
ically applicable for any « and h allowed by the flow scheme.

We assume that the current function ¢ = 0 on the branching lines
OA'ACH and OB'BDK, while ¥ = —Q on FME.

A semicircle with a slot at 6 = 0 and radii 7y and T, (Fig. 2) repre~
sents the entire region filled by the flow in the plane of the velocity
hodograph with the polar coordinates € and 7 = vz/'v?nax. The follow-
ing are the values that ¥ must take along the boundaries of the hodo-
graph region:

Pp=20 for 8= —on, T<TIT

P =0 for 6 = ym, KTy y=1—0

Y= —Q@ for 6=0, T<TSKT

Pp=20 for § == 0, n<I< T (1.1)
Pp=20 for T=1, — onu<0<0

P=20 for T = Ty, 0oy

Pp=0 for T = Tz, —on << OO

Pp=20 for T= T, oo yn (1.2)

The problem then reduces to an internal Dirichlet problem for
Chaplygin's equation:
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Fig. 1

in the regions of the semicircle. As 7 < 1/(28 + 1), Eq. (1.3) is of
elliptic type in this region, and we seek a solution in the form

(v, 8)= 02 ;‘7“ + S (4,5 () + B, @]sin LTG_ ,

k=)

B 0= — 02 L S ¢ 5, @+ Dt @] sin _’;ﬁ
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n=1

=)

¥ (7, 8) = D) [E, 2, (1) 4 F,[ (D] sin _"TE :

n=]

Ye (@, 0= D) [G,7, (v) -+ H, L, (D)]sin .’359 . (1.4)
=1

Here the subscript to ¥ is the number of the region in the semi-~
circle (Fig. 2), while 2,(7} Is an integral of the equation

42l — 1z, + 411l + B — Dilz, — (1.5
— ¥ i — @28+ D3] 2, =0, (v=w0, A),

which is regular at 7= 0 and which has been considered by Chaplygin
[11, while &,(7) is a second linearly independent integral of (1.5)
derived by Lighthill [6] and Cherry [7, 8], which becomes the loga-
rithmic solution of [7] when v is a positive integer. Fal'kovich [2]
was the first to use this integral in the theory of gas jets. The follow~
ing is the Wronskian for these integrals:

W, 0=2'0% & - @z, @H=v({1—7%7, 1.6)
(v= @, &),

where the coefficients An' Bn' cees Hn have to be determined.

The ¢ defined by (1.4) satisfy the boundary conditions of (1.1).
We now specify that the boundary conditions of (1.2) are obeyed and
also that the solutions meet the conditions for analytic continuation
through the boundaries of the subregions, i.e.,

7 d (1.7
e = s, %ﬁl‘:ai,: for T=11, 0O <y .
AP, b}
P2 = Yy, alrz:ai; for T==Ty, —on<LO<O0,

Conditions {1.2) and {1.7) give a system of 8n algebraic equations
in 8n unknowns, which are solved for the coefficients to give the final
solution in the form
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- @r S in A0
P (x, 9)——?‘;&9—7:1—2 Z % (v) _Slnx__],

n=}

$a (v, 0)=— EQE[B +ox— zna % (1) %‘3‘1]

20 < sin A9
(e e’”?ﬁé %o (1) 2522,

B, e)=—%%2_1x4 (ry $008 1.8)
Here
T,t, ) —7T,(v, 1) T, (it} —W, (1} T,(r, w)
X ()=

T, (v2, T0) T, (T2, 7o) W,(m) ~

T, (11, %) — W, (11} T, (%, 12)
Tv (1:21 170) Wv (Tl)

% (0=
(=1, =3, wv=k i=2 [=4 wv=aq),
T, W) =5, (00,0 — 2, @)L, ), T,(x, T =0,
T ) =11, @ W, T (v =W, )
(i 7=0,1, 2 v=0, A). (1.9)
We also note that

T, (To, 7o) — W, (To) T, {11, Ta) — W, (12) W, (o}

X (%) = T, (t2, To) T, (72, To) w, @)’
T, (v, ) — W, () W, (v)
% (%) = T, (o %) W, @)
X(w)=—1, x@)=0, g (a)=x(m)=—1,
% (@) + %y (®) =04
(=1, =3, v=h; i=2, =4 v=0). (1.10)

We introduce the following exactly zero binomial into the ex-
pression for xi(7) in order to unify the expressions for xj(re) and xJ’(Tz)
together with the functions H(v,T), I(v,7), and Q(v,T), which are
defined below by (2.4), (2.10), and (2.14):

W, ()T, (z, o) 7, (%, To)
T, (ve, W)W, (v)) — T, (12 T0)

2. Consider the relation between the parameters of the problem.
The following general formula applies along any jet surface:

B (2.1)
2t i__"_)_ﬁ‘l’_ sin© d@ .

dy= v it

We substitute into (2.1) the ¥4(T, 6) of (1.8), integrate with respect
to 6 along AC (T =7, = const) from O =on(y=0)100=0(y=yc)
use (1.6) and (1.10), and employ the expression for the flow rate

0 = du(l — )P, (2.2)

which gives us the ordinate of point C

Yo = — S H{o, n). (2.3)

Here

1—1\* [ 7\ sinkn
H (v, r):‘ln:(i_;) (%) X
« S (— it T () — W, (1)
Z vi—1 7, (v2, To)

n=t

v=MEk=y,v=w, k=0). 2.4)
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Similarly we find the ordinate of point D:

yp = I sin on -+ SHA, ). (2.5)

We add the lycl of (2.3) to the ypy of (2.5) to get an expression for
the width of the cavity:

a=1sin on -+ 8{H(A, u) + H(e, w)]. (2.6)

Since § + lyCl =h (Fig. 1), we have
8 = Alt + H(e, u)l. @.1

We turn the x- and y-axes counterclockwise through the angle

=Y —an=yn—Y2 x

and get a new coordinate system XAy’ in which along any streamline

e
dy':“——;)lx
1 — (BT &
X[Zr 2 sinr do’ — % o sime dr]. (2.8)

We have 6' = 7/2 and ' = —1/2 along parts B'B and AA" of the
plate, respectively (6’ =80 — 6;), and (2.8) can be written as
1—(B+D7 ( o )
Ay = TR . w81 \ AaT d 1 .
Yy 20t (L — TP\ gzt v (2.9)

where + corresponds to AA' and — to B'B, We integrate (2.9) from 7
to Tz to find the length i1 of part B'B:

4 =@yt (o
ll~—‘2y [ 1%(1——1:)5“ (W)e'=‘/mdf“}‘

To

C1—@B+T (o
+ Y v (1 — )Rt (-‘79' )B’:‘/,n dr}.

max

We calculate the integrals with use of (1.8), (1.10), (2.4), and
(2.7) together with the notation

1—u\?/ 1 \sink
I (v, 1‘):41:(1__;> (;:—) s——lkn'rmx

) S E T =W, @

vi—1 T ’
n—g v (%2, To)

1—n <3 o s
A:<1—Tn> (K)

whereupon elementary steps give

v=Mh k=1 v=0, k=0c), (2.10)

L=hll — A+ HE, w + 1A, w0]—

—TII(A, vt + H(w, 1)] sin on}2, (2.11)




In deriving (2.11) we have used the equalities [1]

P [ A=+ (o
Ij—=— ) “3A7
1—(@B+1Dx 2 {4 —-—1:)“3 t vaax [5 Tl a0 >6‘=’1'21: de +
(ot o K (0= g ) + 20 ) g
1~ (B +1 8
(=13 v=2% i =24 v=0), +S (BVZF )T (%)e»—vmdr} (3.3)
E (1 - suf?m)
n=1 '

The following formula [1] is used to calculate the integrals in con-
junction with (1.8):

(v=h k=7 v=0, k=0).

(2.12) 5.1:"/’[1 — (B )]y, @) dr=
We find the length 7, of AA' similarly: 9 { .
=F_1 {—f [t @+ 2uy; (0] + 2@+ Dy, (ﬁ}.
= h[A— 1+ H (0, %) + T (0, 7) — T (0, w)] X Vo
. . _ and we use (1.10), (2.2), (2.4), (2.7), (2.10), and (2.12) to transform
%A1 + H (o, )] sin om} -1, (2.13) 3.3 10

We substitute into (2.1) for ¥»(1,8") and then the ¥i(7, 8"} from
(1.8), integrate with respect to 0 along A’'OB' {7 = 7y = const) from
0'=—n/2(y'=yplto8' =a/2(y' =

L= ph <t — ) ot x
and (2.10) together with the notation

yé), and use (1.10), (2.2), (2.4), x {1+ @p + 1)—51]—;;‘/2 — 1+ ep+ )70 "7-0.’/:‘} +

RY:25 . \BH1 A — TI(A,
1 7s\P /1y \lesin kﬂx 4+ H} w){t— wP? b @ )T, T TR, WX
Q, T)= 4T< 1 _.T) K;,‘) kst 1 + H(e, w)] sina} L. (3.4)
S b T m) =W (1) An analogous expression may be derived for Ip:
X2y 7, (72, To) ! y v
n=1 L= p°a {1 — )8 1/* {{1 + @B + 1) ol 1 AL
ty== = ()" - cos knt ~UHEpF)u Ay + Hio, w) —1)™ s
— == e oy = k=
W=>A k=y,v=0, o) (2.14) + (1—19)*! (@, Tg) — Ti(e W X
to get the length I of A'B’ in the form % {1+ H(o, 1)} sin ony =, (3.5)
lg = — QA - Q (o, — Q 2.16
s =HhIQM 1) — Q0+ (0, %) — (0, WX (215) Substitution of (3.2), (3.4), (3.5), (2.15), and (2.16) into (3
% {1 4+ H (0, m)] sin ony™, gives
Addition of (2.11), (2.13), and (2.15) gives R = poh{(l__rc)ﬁ-ﬂ —— rg)ﬁ‘”] x
b=k QA v —TG w+ (e, 1)— X [Q(, o) — 84, u) + Qe, 1o— & (©, ) + O}, 1o~
—H(e, u)4+2% 7)—QF u+ ~ 1A, ) + (e, 79 = H(®, 1)l X
+2 (0, t— (@ uw+HG w+H e wx x {1 + H(e,7) sin omy 2,
Xt + H (0, )] sin on}-%, (2.16) This readily gives the normal-pressure coefficient as
We use (2.7} and (2.16) to transform (%.6) to o = £F(Ty T, W) 120 7o) — Ok, W) +
a=h{l} o)~ 0} u+, 1)~
+ Qw, 1) — @, )+ IRk, 1) — AR, ©w)+
—I(w, )+ QA 1) — 2 G, w-+ :
+ H(L\), To) — H(“’& )] {[1 + H(my Tl)] sin ¢ n}™2,
4 2 {0, 1) — @ (0, ) +2[H R, m) + H (0, w)]IX
B
X[t S H ((1), 11)]‘1 (2.17) s:—l- F(To, T1, 172) =
Relations (2.2), (2.7), (2.16), and (2.17) define Q, 6, the speed = 1=T (1 1—w\? [ (1 *rﬁ)ﬁﬂ]. (3.8)
at the jet surfaces of zone 7y, and also a as functions of 11, T2, h, B+Hu\l—m) =)
and I,

We note that
3. The resultant pressure force R on AB is determined by integra-
tion aleng the plate, which gives

lim F{zy, T, w) = (0? — vo®)oy 2 0pn vy, — 0, (3.7)
R=15+ I3} pofs — pal,

Equations {2.7), {2.16), (2.17), and (3.6) serve to solve the prob-
A lem.
I :S pdy’, I S pdy (3.1) 4. The result is readily extended to the case of an incompressible
4 liquid, The expressions [1, 8] for zy(T) and (1) are used with (1.8)
Here p is the pressure ahead of the plate, py is the pressure in the and (1.9) to find the limits
stagnant zone, and pp is the pressure behind the plate. We use (2.9) T, ) — W (v) v 70" (1 — ")
with lim T, 2 == — —
Yimax® T, (52, To) 2 1— 9022
SN\ e v,
— Bl __ B . ‘51
p=p (1 =0, py=p 1, —1,)", 955~ <?> :v—;’
pﬂzv;ax/2(3+ =012, (3.2 T (75 Tg) — W, (1) v g (1— Qofv)z
13 ———— e A___.._.—'._._ — 7\‘
vm:fioor T, (%3, To) T D =04
in which pg is the gas pressure at the branch point to put It as

(i, =0, 1, 2), (4.1)
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We pass to the limit for vy, = « (7> 0} in (2.7), (2.16), (2.17),
and (3.6) in conjunction with (3.7) and (4.1) to get these expressions as

§ =1 [1+ Hye, w7,
1= BHy, vg) — Mok, ) + My, ve) —
— Hy(®, v1) + Qofh; vg) — QoA 11) + Lo(®@, v) —
— Qy(®@, v} + Hy(A, ) + Hy(w, )] ({14 Hy(w, 21)] sin om}™t,
@ = h{IIg(A, vg) — oA, 0) + Tg(@, vo)—
— Moo, v1) + Qofh, ve) — Qofh, 11) + Qg(o, vg) —
—Qq(o@, m) -+ 2AH, u)+ He(w, w)l} [1 4 Hyw, )},
en = ez (1—go[ Mo, vg) — -
— T4, 1) -+ Dol@, vg)— (@, 21) + QofA, w), — Lok, 1) +
+ Qq(®, vg) — Qo(®, )] {1+ H(w, w)] sin ony L,
Here we have used the symbols

Ho (v, v)) =lim H v, T)=
T.—0

i

. sinon i n-1 n qigv (11— Q()iv )2
20— 2 k2 2v
’ n=1 1— Zo2

Mo (v, ) =1limII (v, 7)==
-ri_oo
n - quv (1 - qizv)z

o

sinon 71

2q10 — (-4 )

q1e P 121 n? kK 11— q022v

Qfv, 7)=HmQ (v, )=
70
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sinon o n 4y (1—g,")?
it 2 v ond— k2

2010
1—qq,"

n=i

vV=ME=y,v=0,k=0c;i=01).
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